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The planar aligned nematic liquid crystal cell with different anchoring for the two substrates
(i.e. a non-symmetric NLC cell) is investigated by an analytical method. We deduce the basic
equations and the boundary conditions of the tilt angle h of the LC director. Expressions for
threshold and saturation magnetic field are obtained, and numerical results of these two
quantities with variation in anchoring parameters of the two substrates are given. A
symmetry breaking parameter D is introduced and the relations between D and applied field,
as well as the two sets of anchoring parameters are discussed in detail. A feasible
experimental plan for measurement of anchoring strengths of a series of different substrates
is proposed.

1. Introduction

The surface physics of liquid crystals (LCs) is an

important topic in LC science [1]. The anchoring action

between a LC and a solid surface has been paid much

attention. In basic research, a planar aligned nematic

liquid crystal (NLC) cell is often used. In most of these

investigations, the authors suppose that the anchoring

of the two substrates of a cell is identical, and the

distribution of directors is symmetrical relative to the

middle plane of the LC cell. We call this type of cell a

symmetrical NLC cell. However, the cell with different

anchoring for the two substrates has received little

attention. This type of cell is called a non-symmetric

NLC cell. We think that the non-symmetric NLC cell

has more scope for new applications.

We investigate the non-symmetric NLC cell analyti-

cally. The surface anchoring energy of the modified

Rapini–Papoular type [2] is adopted, this is

gs~
1

2
A sin2 h 1zf sin2 h

� �
ð1Þ

where A is the anchoring strength and f is a

modification parameter. For the lower substrate we

use A1, f1, and for the higher substrate A2, f2.
In this paper, we describe the main properties of a

non-symmetric planar aligned NLC cell. In § 2, the

basic equations and boundary conditions of the tilt

angle h(z) are derived using rigorous mathematical

treatment. There are two sets of fundamental equation

and corresponding boundary conditions, one set repre-

sents a symmetric LC cell with thickness 2d and

anchoring parameter A1, f1; the second set represents

another symmetric LC cell with thickness 2l22d and

anchoring parameter A2, f2, where z~d is the place of

maximum tilt hm of the non-symmetric cell. So the

non-symmetric cell can be seen as two half-symmetric

cells in series. In § 3, rigorous expressions for the

threshold and saturation fields are derived analytically.

The values of these two quantities are dependant on

A1, f1 and A2, f2. In § 4, in order to show the character-

istic property of a non-symmetric cell, we introduce a

symmetry breaking parameter D, and define

D~
d{l=2

l=2
~2

d

l
{1: ð2Þ

The relation between D and applied field as well as A1,

f1, A2, f2 are discussed in detail by means of a

numerical method. In § 5, as an application example, we

propose an experimental plan for the measurement of

anchoring strengths of a series of different substrates.

2. The non-symmetric planar aligned NLC cell

In figure 1, we give the theoretical model of a non-

symmetric NLC cell. The anchoring energy parameters

of top and bottom substrates are, respectively (A2, f2)

and (A1, f1). The director n is n~(cos h, 0, sin h),

h~h(z). The easy direction is e~(1, 0, 0) for both

substrates. The applied magnetic field is H~(0, 0, H).

The surface energy per unit area on bottom and top*Author for correspondence; e-mail: Yang_gc@hotmail.com
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substrates can be expressed as

gsjz~0~
1

2
A1 sin

2 h0 1zf1 sin
2 h0

� �
ð3Þ

gsjz~l~
1

2
A2 sin

2 hl 1zf2 sin
2 hl

� �
: ð4Þ

The Gibbs free energy [3] per unit volume in the cell

can be written

gb~
1

2
K11 cos

2 hzK33 sin
2 h

� � dh

dz

� �2

{
1

2
xaH

2 sin2 h ð5Þ

where K11, K33 are the Frank splay and elastic con-

stants, respectively, and xa is the magnetic anisotropy

of the NLC medium. The total energy of the system is

therefore

G~S

ðl
0

1

2
K11 cos

2 hzK33 sin
2 h

� � dh

dz

� �2
"

{
1

2
xaH

2 sin2 h

�
dzz

1

2
SA1 sin

2 h0

1zf1 sin
2 h0

� �
z

1

2
SA2 sin

2 hl 1zf2 sin
2 hl

� �
ð6Þ

where S is the area of the substrate. Applying the

calculus of variations [4] of G yields

K11 cos
2 hzK33 sin

2 h
� � d2h

dz2
{

K33{K11ð Þ sin h cos h dh

dz

� �2

{xaH
2 sin h cos h~0:

ð7Þ

The boundary conditions at z~0 and z~l are,

respectively

K11 cos
2 h0zK33 sin

2 h0
� �dh

dz

����
z~0

~A1 cos h0 sin h0 1z2f1 sin
2 h0

� � ð8Þ

K11 cos
2 hlzK33 sin

2 hl
� �dh

dz

����
z~l

~{A2 sin hl cos hl 1z2f2 sin
2 hl

� �
:

ð9Þ

equation (7) and the boundary conditions (8), (9) have

two trivial solutions

h:
p

2
, h:0:

We call hw0 the uniform solution, and hwp/2 the

saturation solution. In addition, there is a non-trivial

solution, which satisfies

1

2

d

dz
K11 cos

2 hzK33 sin
2 h

� � dh

dz

� �2
"

zxaH
2 sin2 h

#
~0:

ð10Þ

The non-trivial solution is named the disturbed

solution. From equation (10), we obtain

K11 cos
2 hzK33 sin

2 h
� � dh

dz

� �2

zxaH
2 sin2 h~C ð11Þ

where C is constant.

We know that when z~0, dh
dz
> 0; otherwise when

z~l, dh
dz
v0. So there must be a value of z[ 0, lð Þ which

satisfies the condition dh
dz
~0. Putting z~d, dh

dz

��
z~d

~0

and h has a maximum hm. From equation (10), we

obtain C~xaH
2 sin2 hm. Thus equation (11) leads to

K11 cos
2 hzK33 sin

2 h
� � dh

dz

� �2

~

xaH
2 sin2 hm{ sin2 h
� � ð12Þ

which can be written as

dh

dz

� �2

~
xaH

2 sin2 hm{ sin2 h
� �

K11 cos2 hzK33 sin
2 h

: ð13Þ

Equation (13) represents two equations, namely

dh

dz
~

xa
K11

� �1
2

H
sin2 hm{ sin2 h

1zc sin2h

 !1
2

, for 0¡z¡d ð14Þ

dh

dz
~{

xa
K11

� �1
2

H
sin2 hm{ sin2 h

1zc sin2h

 !1
2

, for dvz¡l ð15Þ

where c~(K332K11)/K11.

Substituting equations (14) and (15) into equations

(8) and (9), we have the equations of the boundary

conditions as

K11xað Þ
1
2H 1zc sin2 h0
� �

sin2 hm{ sin2 h0
� �� �1

2

~A1 cos h0 sin h0 1z2f1 cos
2 h0

� �
, for z~0

ð16Þ

K11xað Þ
1
2H 1zc sin2 hl
� �

sin2 hm{ sin2 hl
� �� �1

2

~A2 cos hl sin hl 1z2f2 cos
2 hl

� �
, for z~l:

ð17Þ

From these equations, we see that equations (14) and

Figure 1. Non-symmetric weak anchoring NLC cell. The
anchoring parameters are A1, f1 (top substrate) and A2,
f2 (bottom substrate).
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(16) are the basic equation and boundary condition of a

symmetric cell with thickness 2d and anchoring para-

meter A1, f1. Equations (15) and (17) are the basic

equation and boundary condition of a symmetric cell

with thickness 2(l2d ) and anchoring parameter A2, f2.

Thus the non-symmetric cell can be seen as two half

symmetric cells in series.

Now we make a variable transformation. Put

u~ sin2 hm ð18Þ

and adopt the new variable n to displace h

v~
tan2 h

tan2 hm
v0~

tan2 h0

tan2 hm
, vl~

tan2 hl

tan2 hm

� �
: ð19Þ

Furthermore we introduce reduced quantities

h~
H

H0
c

, a1~
A1l

2K11
, a2~

A2l

2K11

where H0
c~

p
l

K11

xa

	 
1
2

. Using these quantities, from

equations (14) and (15) we have

p

2
h
2d

l
~I1,0,

p

2
h
2l{2d

l
~I1,l

where

I1,0~

ðhm
h0

1zc sin2 h

sin2 hm{ sin2 h

 !1
2

dh

~

ð1
v0

1

2 v 1{vð Þ½ �
1
2

1{uz 1zcð Þuv½ �
1
2

1{uzuv
dv

ð20Þ

I1,l~

ðhm
hl

1zc sin2 h

sin2 hm{ sin2 h

 !1
2

dh

~

ð1
vl

1

2 v 1{vð Þ½ �
1
2

1{uz 1zcð Þuv½ �
1
2

1{uzuv
dv:

ð21Þ

With these new variables, the equilibrium equa-

tions (14), (15) can be represented as

p

2
h
2d

l
~I1,0 ð22Þ

p

2
h
2l{2d

l
~I1,l : ð23Þ

From equations (22) and (23), we easily obtain

p

2
h~

1

2
I1,0zI1,lð Þ: ð24Þ

Boundary conditions (16) and (17) can be expressed as

p

2
h~a1

v0

1{v0

� �1
2

|
1{uzu 1z2f1ð Þv0

1{uzuv0ð Þ 1{uzu 1zcð Þv0½ �
1
2

, for z~0

ð25Þ

p

2
h~a2

vl

1{vl

� �1
2

|
1{uzu 1z2f2ð Þvl

1{uzuvlð Þ 1{uzu 1zcð Þvl½ �
1
2

, for z~l:

ð26Þ

From these equations, we see that for the exchange

of a1, f1 and a2, f2, the value of h is the same.

3. Threshold field and saturation field

Suppose that at the threshold and saturation points,

the director changes continuously with the applied field.

That is to say, the transitions are of second order. First

we discuss the threshold field hth. Put u~0, and

equations (24), (25) and (26) become

p

2
hth~

1

2

ð1
v0

1

2 v 1{vð Þ½ �
1
2

dvz

ð1
vl

1

2 v 1{vð Þ½ �
1
2

dv

8<
:

9=
; ð27Þ

p

2
hth~a1

v0

1{v0

� �1
2

ð28Þ

p

2
hth~a2

vl

1{vl

� �1
2

: ð29Þ

Equations (28) and (29) yield

v0~
p2h2th

4a21zp2h2th
, vl~

p2h2th
4a22zp2h2th

: ð30Þ

Substituting equation (30) into equation (27) leads to

cos phthð Þ~ p2h2th{4a1a2

4a21zp2h2th
� �

4a22zp2h2th
� �� �1

2

ð31Þ

or

tan phthð Þ~ 2phth a1za2ð Þ
phthð Þ2{4a1a2

: ð32Þ

We can see that the value of hth is same for exchanges

a1pa2 and a2pa1, i.e. hth (a1, a2)~hth (a2, a1). When

a1~a2~a, equation (32) can be expressed as

cot p
2
hth

� �
~ p

2a hth. This is consistent with literature

results [5].

We now discuss the results for different a1 and a2
using numerical calculations. Figure 2 shows the rela-

tion between the threshold field hth and the reduced

anchoring strength a1, a2. In figure 2, curves 1, 2, 3, 4

Non-symmetric planar aligned NLC cells 1443
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and 5 represent a1~3.0, 2.0, 1.0, 0.5 and 0.1, res-

pectively. The dashed curve represents the case that the

values of anchoring strength are same, i.e. a1~a2. We

can see that the value of hth will increase with the

increasing of a1 or a2; and for fixed a2, hth increases

linearly with a1.
We next discuss the saturation magnetic field hs.

Putting u~1, equations (24), (25) and (26) become

p
2
hs~

1
2

Ð1
v0

1zcð Þ
1
2

2v 1{vð Þ dvz
Ð1
vl

1zcð Þ
1
2

2v 1{vð Þ dv

" #
ð33Þ

p

2
hs~a1

1z2f1

1zcð Þ
1
2

1

1{v0ð Þ
1
2

ð34Þ

p

2
hs~a2

1z2f2

1zcð Þ
1
2

1

1{vlð Þ
1
2

: ð35Þ

According to the integral formula
Ð

dx

x 1{xð Þ
1
2

~

{2 tanh{1 1{xð Þ
1
2, equation (33) leads to

phs~ 1zcð Þ
1
2 tanh{1 1{v0ð Þ

1
2z tanh{1 1{vlð Þ

1
2

h i
: ð36Þ

With equations (33), (34) and (35) and the formula

tanh xzyð Þ~ tanh xz tanh y
1z tanh x tanh y

, we obtain

tanh
1

1zcð Þ
1
2

phs

" #

~
2phs 1zcð Þ

1
2 a1 1z2f1ð Þza2 1z2f2ð Þ½ �

phsð Þ2 1zcð Þz4a1a2 1z2f1ð Þ 1z2f2ð Þ
:

ð37Þ

We see that hs is determined by

a01~a1 1z2f1ð Þ and a02~a2 1z2f2ð Þ, and its value is

the same for exchange a01?a02 and a02?a01, i.e.

hs a01, a
0
2

� �
~hs a02, a

0
1

� �
. When a1~a2~a, f1~f2~f,

equation (37) can be simplified to

p

2
hs~

a 1z2fð Þ
1zcð Þ

1
2

coth
1

1zcð Þ
1
2

p

2
hs

" #

This is consistent with literature results [6].

We now discuss our results for different a01 and a02
using numerical calculations. Figure 3 shows this

relation when the value of parameter c~0.25 is

adopted. Curves 1, 2 and 3 represent a01~0:9, 0:5 and

0.1, respectively. The dashed curve represents a01~a02.

It can be seen that the value of hs increases with

increasing a01 and a02.

4. Symmetry breaking

The characteristic property of a non-symmetric LC

cell is that the place of maximal tilt angle hm is z~d

and d|l/2. The symmetry of the director distribution

about the middle plane of the cell is broken. We define

a dimensionless quantity D to describe the symmetry

breaking,

D~
d{l=2

l=2
~2

d

l
{1: ð38Þ

From equation (38), we see that Dw0 indicates the

position of hm above the middle plane and Dv0

indicates the position of hm below the middle plane.

Substituting equations (22), (23) into (38),we obtain

D~
I1,0{I1,l

I1,0zI1,l
~

I1,0{I1,l

ph
: ð39Þ

We now discuss the relations between D and h. From

the definitions of I1,0, I1,l (22) and (23) as well as

Figure 2. The hth2a2 curves for various a1. Curves 1, 2, 3, 4
and 5 represent a1~3.0, 2.0, 1.0, 0.5 and 0.1, respectively.
The dashed curve represents a1~a2.

Figure 3. The hs2a2 curves for various a01. Parameter
c~0.25. Curves 1, 2 and 3 represent a01~0:9, 0:5 and
0.1, respectively. The dashed curve represents a01~a02.
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equations (25) and (26), we see that the relations are

dependent on anchoring parameters a1, f1, a2 and f2.

We discuss three cases.

4.1. h~hth
In this case D is denoted by Dth. Because u~0,

I1,0ju~0~ cos{1 v
1
2

0, I1,l ju~0~ cos{1 v
1
2

l , we have

Dth~
cos{1 v

1
2

0{ cos{1 v
1
2

l

phth

~
sin{1 1{v0ð Þ

1
2v

1
2

l{v
1
2

0 1{vlð Þ
1
2

h i
phth

:

ð40Þ

Substituting equations (28) and (29) into (40), leads to

Dth~

sin{1 2 a1{a2ð Þphth
4a2

1
zp2h2

thð Þ 4a2
2
zp2h2

thð Þ½ �
1
2

( )

phth
: ð41Þ

Because hth is itself a function of a1 and a2, Dth is

only relevant to a1, a2. Using the results of hth in § 3, we

can calculate the value of D. The results are shown in

figure 4, in which each of the five curves represents a

relation between Dth and a1 for fixed a2; a2~0.1, 0.5,

1.0, 1.5 and 2.0 for curves 1, 2, 3, 4, and 5, respectively.

We see that these curves tend to lines of small slopes

when the value of a1 is large. For the exchange of

a1 and a2, Dth will become 2Dth, i.e. Dth (a1, a2)~

2Dth (a2, a1).

4.2. h~hs
In this case D can be denoted by Ds. Putting u~1,

I1,0ju~1~ 1zcð Þ
1
2sinh{1 1{v0

v0

� �1
2

,

I1,l ju~1~ 1zcð Þ
1
2sinh{1 1{vl

vl

� �1
2

. Equation (39) leads to

Ds~
1zcð Þ

1
2

phs
sinh{1

2phs 1zcð Þ
1
2 a01{a02
� �

p2h2s 1zcð Þ{4a01
� �1

2 p2h2s 1zcð Þ{4a02
� �1

2

8<
:

9=
;

ð42Þ

where parameters a01~a1 1z2f1ð Þ and a02~a2 1z2f2ð Þ.
So Ds is a function of a01 and a02.

Using the values of hs in § 3, we can calculate the

values of Ds. The results are shown in figure 5, in which

each curve represents the relation between Ds and a01 for
fixed a02; and a02~0:1, 1:0, 2:0, 3:0 and 4:0 respectively.

We see that these curves tend to lines of small slope

when the value of a01 is large. For the exchange of

a01 and a02, the value of Ds will become 2Ds, i.e.

Ds a01, a
0
2

� �
~{Ds a02 a

0
1

� �
.

4.3. hthvhvhs
Through much calculation, we find the relation

between D and h is sensitive to the ratio of a2 and

a1. Putting

r~
a2
a1

ð43Þ

and substituting equations (22), (23), (25) and (26) into

(39), we can find the relation between D and h, which

can be seen from figure 6. The typical results of

Figure 5. The Ds{a01 curves for various a02 at the saturation
point. Parameter c~0.25 and curves 1, 2, 3, 4 and 5
represent a02~0:1, 1:0, 2:0, 3:0 and 4.0, respectively.

Figure 4. The Dth2a1 curves for various a2 at the threshold
point. Parameter c~0.25 and curves 1, 2, 3, 4 and 5
represent a2~0.1, 0.5, 1.0, 1.5 and 2.0, respectively.

Non-symmetric planar aligned NLC cells 1445
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numerical calculations are shown in figure 6 (a) and

6 (b). Five curves are denoted by 1, 2, 3, 4, and 5 for

each figure. Each curve corresponds to a fixed r

value; r~0.1, 0.25, 0.5, 0.75 and 1.0, respectively. In

figure 6 (a), taking a1~1.0, f1~0.2 and f2~0, we see

that when r~1, D|0, because f1|f2. In figure 6 (b),

taking a1~2.0, f1~0.2 and f2~0.2, when r~1, D~0,

because f1|f2. From these two figures we see that D is

also sensitive to r.

5. Measurement of anchoring strengths of a series of

different substrate

Many methods are available to measure the anchor-

ing strength A of substrates and values for many

different substrates are reported [7, 8, 9]. However,

there are large discrepancies between different authors,

even when they have used the same method and same

substrates (values differing by more than one or two

orders of magnitude are often reported [10]). Hence, a

standard method for measuring the anchoring strength

for a series of different substrates is necessary.

We now propose a feasible experimental plan for

measuring the anchoring strength. Suppose that for a

certain substrate, its anchoring strength A1 with a

corresponding NLC material is well known; we can

take this substrate with the NLC material as a standard

combination. If another substrate has an unknown

anchoring strength A2, we can make a non-symmetric

cell with the standard NLC material, for which, the

bottom substrate is standard (anchoring strength A1)

and the top substrate has unknown anchoring strength

A2. Then the threshold field Hth can be measured, and

A2 can calculated.

Equation (32) leads to

tan phthð Þ~ 1

a1

2phthð1za2=a1Þ
1
a2
1

p2h2th{4a2=a1
ð44Þ

Because, a2=a1~A2=A1, h~H=H0
c and a~Al=2K11 we

have

A2

A1
~Hth xaK11ð Þ

1
2 xaK11ð Þ

1
2Hth tan

n
l

xa
K11

� �1
2

Hth

" #
{A1g

,

A1 A1 tan l
xa
K11

� �1
2

Hth

" #
zHth xaK11ð Þ

1
2

( )
: ð45Þ

From equation (45), we can calculate the value of A2/A1

if l and Hth have been measured, then A2 is obtained.

Using this method, the anchoring strength for a series

of different substrates can be measured. Because the

anchoring strength A1 is precisely known, and is same

for each measurement, all values of anchoring strength

A2 for various substrates are comparable.

The principal advantage of this method is that the

systematic error of the A2/A1 value can be greatly

reduced. In order to explain this, by using equa-

tions (28) and (29), we express A2/A1 as

A2

A1
~ðv0=1{v0Þ

1
2=ðvl=1{vlÞ

1
2 ð46Þ

For H~Hth, equations (22) and (23) yield

p

2
hth

2d

l
~ cos{1 v

1
2

0 ð47Þ

p

2
hth

2l{2d

2l
~ cos{1 v

1
2

l ð48Þ

where d is the place of the maximal tilt angle hm at the

threshold point. From equations (47), (48) and (38), we

Figure 6. The D2h curves for various r, a1, f1, f2. (a)
Parameters f1~0.2, f2~0, a1~1.0; curves 1, 2, 3, 4 and 5
represent r~0.1, 0.25, 0.5, 0.75 and 1.0, respectively. (b)
Parameters f1~f2~0.2, a1~2.0; curves 1, 2, 3, 4 and 5
represent r~0.1, 0.25, 0.5, 0.75 and 1.0, respectively.
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obtain

v0

1{v0

� �1
2

~ cot
p

2
hth

2d

l

� �

~ cot
l

2

xa
K11

� �1
2

Hth 1zDthð Þ
" # ð49Þ

vl

1{vl

� �1
2

~ cot
p

2
hth

2l{2d

l

� �

~ cot
l

2

xa
K11

� �1
2

Hth 1zDthð Þ
" #

:

ð50Þ

Substituting equations (49) and (50) into equation (46),

leads to

A2

A1
~

tan l
2

xa
K11

	 
1
2

Hth 1{Dthð Þ
� �

tan l
2

xa
K11

	 
1
2

Hth 1zDthð Þ
� � : ð51Þ

Equation (51) is another formula of relative anchoring

strength A2/A1, and includes the parameter Dth. From

figure 4, we can see that Dth is independent of l when

a1w1. We can obtain a1w1 by adjusting the thickness l

of the NLC cell for a~Al /2K11. The change of Dth is

only 1023 when the change of l is 1022.

By means of equation (51), we analyse the measure-
ment error of A2/A1. The original experimental mea-

sured values are l and Hth; many reasons may cause the

error of measured values of these quantities, such as the

following.

(1) Experimental environment. There is evidence to

illustrate that the anchoring strength A is

dependent on temperature [1].

(2) The NLC cell fabrication, i.e. whether the two

substrates are strictly plane and parallel, and

whether the easy direction e occurs on the two

substrates (the pretilt angle is zero).

(3) Measurement techniques.

These factors all influence the measurement of l and

Hth. However, from equation (51), we can see that

errors in l and Hth influence the values of numerator

and denominator in the same way. So errors in A2/A1

can be counteracted. We therefore believe that any

large discrepancy in measured values of anchoring

strength, can probably be eliminated by this method.
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